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ABSTRACT: Approximation by classical methods is not always efficient, particularly when the considered 
random variables distribution functions are complex ones or mixtures of distribution functions. We face this 
situation in case of approximation of grained materials features distribution functions, mainly grain 
composition curves. To estimate these curves the non-parametric statistical methods were proposed, among 
which orthogonal Fourier series method and kernel methods based on Epanechnikov and Gauss kernels were 
taken into consideration. The effects of resulted curves fitting to empirical distributions are better in 
comparison with classical methods.  
 
 
1 INTRODUCTION 

Approximations of grained materials features 
distribution functions are being used in purpose of 
their application to determine certain numerical 
characteristics (mean, variance, asymmetry factor) 
and also to further their application to models of 
process course and its results simulation. The basic 
law of processing is the law of conservation of mass, 
known in processing as balance equation of the 
following form:  
( ) ( ) ( )∫=

max
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,
w

w
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where g(x) is density function of feature X in 
product; ( )xwp ,  - function determining probability 
of transfer feed grains of feature values w to 
elemental range of feature value;  f(w) – density 
function of feature W in feed. Assuming that the 
function ( )xwp ,  is known and conducting the 
precise approximation of function f(w) the optional 
forecast (simulation) of value g(x) may be given for 
any value of x. 

The classical approximation is often not efficient 
enough to determine the correct form of distribution 
function, what is important to estimate the values of 
statistical parameters. It is visible very clearly in the 
example of grained materials. It is usually hard to 
determine the exact statistical distribution function 
of grain composition. For example, the feed, which 
goes to processing industrial plant, is composed of 
many fractions of different characteristics. In effect 
it gives the mixture of distribution functions, which 
formulae may be difficult to determine precisely, 

even if the distribution functions of components are 
known. Furthermore it may be a completely 
different kind of distribution function than the 
original ones. In this case, the approximations by the 
classical distribution functions, like Weibull, 
Gaudin-Schuhmann-Andreyev, log-norm give 
usually a large value of residual deviation, what 
proves that they do not sufficiently well describe the 
reality. This may cause errors in estimating certain 
factors of researched material.  

Because of this situation, the methodology of non-
parametric statistical researches is presented in the 
paper. This kind of statistics is a new way of 
approximation, which allow creating the real 
distribution function for the researched material and 
minimize the value of residual deviation. Among 
non-parametric methods, the method of 
approximation by Fourier orthogonal series and 
kernel approximation were taken into consideration. 
From the kernel methodology, the authors applied 
the approximation by Epanechnikov and Gauss 
kernels. In the base of results of materials 
comminution it occurred that the resulting non-
parametric distribution functions are far much better 
fitted to the data than the classical ones. This 
methodology may be applied not only to determine 
the grain composition, but also element composition, 
which may be even more important from the 
financial point of view. The summarized comparison 
of the non-parametric and classical methods is 
presented at the end of the paper.  



2 ESTIMATION OF RANDOM VARIABLES 
DENSITY FUNCTION BY KERNEL METHODS  

One of the main methods of modern non-parametric 
theory of distribution functions estimation is the 
method called kernel method. This method was 
introduced by Rosenblatt [Rosenblatt, 1956], who 
conducted the naive estimator analysis (derived by 
Fix and Hodges in 1951) and introduced the term of 
kernel estimation. Researches over these method for 
one-dimensional random variable were conducted 
[Parzen, 1962; Stone, 1984; Watson, 1963; Whitle, 
1958]. 

If we assume as the density function estimator so-
called naive estimator given by the equation: 
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where: x1,...,xn is realization of the sample X1,...,Xn 
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we obtain discrete function (similarly as in case of 
histogram). However, it is easy to avoid this 
disadvantage by replacing the weighted function 
w(x) by smooth function K(x), called kernel function 
or simply kernel, which have to fulfill the condition 
[Efromovich, 1999] 
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Then, for the certain simple random sample  X1,..., 
Xn, kernel estimator of density function is defined as  
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where x1,..., xn is realization of random sample X1,..., 
Xn and h>0 is the parameter called band width or 
smoothing parameter.  
Let us notice that from the equations (3) and (4) 
results the condition that             

( )∫ =
∞

∞−
1ˆ dxxf                       (5) 

Furthermore f̂ fulfill the same conditions of 
differentiability as were overlaid on kernel. 

The measure of fitting of estimator ( )xf̂  to the real 
distribution density function f(x) is so called mean 
squared error (MSE) [Silverman 1986] 

( ) ( ) ( )( )2ˆˆ xfxfEfMSE f −=                     (6) 
The question occurs, if there is a possibility of 

choosing such optimal kernel and optimal band 
width h for which the integrated mean squared error 
is the lowest for any estimated distribution density 
function.  

The answer is positive [Silverman 1986] if the 
estimated density function fulfills some regularity 
conditions (is twice differentiable and second 
derivative fulfill the Lipschitz condition of any 
grade). It was proven that the only one, 

asymptotically optimal kernel is Epanechnikov 
kernel given by the following formulae: 
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where b – scale parameter ( ) 
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Other kernel is so-called Gauss kernel, given by the 
formulae: 
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The selection of optimal band width will be done 
as following [Gajek and Kałuszka 2000]: 
If we apply Epanechnikov kernel: 

5
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In case of Gauss kernel: 
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where n – sample quantity; σ - standard deviation. 
Practically σ is being changed by s calculated in 
base of random sample 
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3 ESTIMATION OF RANDOM VARIABLES 
DISTRIBUTION FUNCTIONS BY 
ORTHOGONAL FOURIER SERIES METHOD 

One of other known methods of modern non-
parametric theory of one-dimensional  variable 
distribution function estimation is approximation by 
using Fourier series [Chentsov, 1962; Efron and 
Tibshirani, 1996; Schwartz, 1967; Wahba, 1981; 
Watson, 1969]. This method was introduced by 
Chentsov in 1962 to approximation of density 
function f(x) in base of random sample.  

Later [Chentsov, 1980; Efron and Tibshirani, 
1996], the estimation of function ( ) ( )( )xfxg log=  
by this method was recommended. Majority of 
results of these (and other) works may be found in 
books [Devroye and Györfi, 1985; Efromovich, 
1999; Hart, 1997; Tompson and Tapia, 1990; 
Silverman, 1986]. 

Let assume the sequence ( ){ }xnϕ  to be functional 
orthonormal sequence in range [0,1], what means 
that 
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If random variable has values from the range [a, b] 
then, by linear transformation, we change this range 
into the range [0, 1], by using the following 
equation: 
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Let f(x) be the density function of researched 
distribution. Then, by using Fourier series theory, 
we may present f(x) by infinite sum in the form 

( ) ( )∑
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where Qj are the Fourier coefficients determined by 
the formulae: 
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The estimator of researched distribution density 
function is partial sum of Fourier series 
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where J is so-called cut parameter [Tarter and Lock, 
1990]. 

The statistical problem of density function f 
estimation rely on determination the estimators for: 

a) Fourier coefficients; 
b) cut parameter J; 
c) weight coefficients ωj (if it is requested). 

Let X to be researched random variable and x1,...xn 
n-element realization of random sample of this 
variable. We assume that the random variable X 
accepts the values from the range [0, 1]. 
As the estimator of Fourier coefficients Qj the 
following formulae is assumed 
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This estimator is unbiased and heavy consistent one 
[Efromovich, 1999]. 

The next step is to choose the cut parameter J. As 
the criterion of selection, the MSE error should be 
used (6), which measures the global fitting of 
estimator. For cut parameter, the following estimator 
is accepted: 
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for which ( )s
JJ

a
n≤≤0

minarg  accepts the values equal to s 

coefficient for which (a0,...as) is the lowest element 
and Jn is the integral part of number (4+0,5lnn) 
[Efromovich, 1999]. 
 
4 ESTIMATION OF GRAIN COMPOSITION 
CURVES BY NON-PARAMETRIC 
STATISTICAL METHODS 

The grain composition of 10- stage porphyry 
crushing products were selected to the estimation. 
The results are presented in table 1. 

4.1 Kernel methods 
One of the most important issues in mineral 
processing is estimation of crushing products grain 

 
Table 1. The juxtaposition of  ten various time porphyry crushing results . 

Stage  
Class [µm] 0-5 5-6,3 6,3-8 8-10 10-12,5 12,5-16 16-18 18-20 20-25 

di 2,5 5,65 7,15 9 11,25 14,25 17 19 22,5 
I 

ni 10,05 1,94 2,52 6,01 13,16 26,92 9,42 14,4 15,58 
Class [µm] 0-4 4-5 5-6,3 6,3-8 8-10 10-12,5 12,5-16 16-18 18-20 

di 2 4,5 5,65 7,15 9 11,25 14,25 17 19 
II 

ni 14,57 6,65 6,03 7,83 18,34 20,91 18,4 3,11 4,16 
Class [µm] 0-1,6 1,6-2 1-3,15 3,15-4 4-5 5-6,3 6,3-8 8-10 10-12,5 

di 0,8 1,8 2,575 3,575 4,5 5,65 7,15 9 11,25 
III 

ni 16,31 2,67 8 6,21 16,03 14,11 14,85 16,45 5,37 
Class [µm] 0-1 1-1,6 1,6-2 2-3,15 3,15-4 4-5 5-6,3 6,3-8 8-10 

di 0,5 1,3 1,8 2,575 3,575 4,5 5,65 7,15 9 
IV 

ni 17,23 6,44 3,76 11,59 9,42 25,33 14,32 8,3 3,61 
Class [µm] 0-0,8 0,8-1 1-1,6 1,6-2 2-3,15 3,15-4 4-5 5-6,3 6,3-8 

di 0,4 0,9 1,3 1,8 2,575 3,575 4,5 5,65 7,15 
V 

ni 17,66 3,03 7,59 4,57 14,2 12,95 27,77 8,81 3,42 
Class [µm] 0-0,315 0,315-0,4 0,4-0,5 0,5-0,63 0,63-0,8 0,8-1 1-1,6 1,6-2 2-3,15 

di 0,575 0,3575 0,45 0,565 0,715 0,9 1,3 1,8 2,575 
VI 

ni 19,02 4,08 4,26 5,34 5,19 9,94 31,02 11,62 9,53 
Class [µm] 0-0,25 0,25-0,315 0,315-0,4 0,4-0,5 0,5-0,63 0,63-0,8 0,8-1 1-1,6 1,6-2 

di 0,125 0,2825 0,3575 0,45 0,565 0,715 0,9 1,3 1,8 
VII 

ni 20,53 2,79 5,43 5,9 8,65 8,77 17,73 27,15 3,05 
Class [µm] 0-0,16 0,16-0,25 0,25-0,315 0,315-0,4 0,4-0,5 0,5-0,63 0,63-0,8 0,8-1 1-1,6 

di 0,08 0,205 0,2825 0,3575 0,45 0,565 0,715 0,9 0,3 
VIII 

ni 33,25 21,06 8,53 14,48 10,01 7,05 3,01 1,82 0,79 
Class [µm] 0-0,1 0,1-0,125 0,125-0,16 0,16-0,25 0,25-0,315 0,315-0,4 0,4-0,5 0,5-0,63 0,63-0,8 

di 0,05 0,1125 0,1425 0,205 0,2825 0,3575 0,45 0,565 0,715 
IX 

ni 27,5 8,7 1,87 25,23 9,61 14,39 7,83 3,57 1,3 
Class [µm] 0-0,08 0,08-0,1 0,1-0,125 0,125-0,16 0,16-0,25 0,25-0,315 0,315-0,4 0,4-0,5 0,5-0,63 

di 0,04 0,09 0,1125 0,1425 0,205 0,2825 0,3575 0,45 0,515 
X 

ni 26,81 3,59 7,02 4,93 25,25 9,96 13,01 6,24 3,19 
where: di – middle of i-th class, i=1,2,...,9; ni – percentage part of i-th class. 



composition curves. In this paper, the kernel 
estimation by Epanechnikov and gauss kernels were 
applied to estimate grain composition density 
functions. Then we determine the suitable grain 
composition curves and compare their „fitting” to 
the curves given by parametric estimation and by 
Fourier series estimation.  

To evaluate the fitting level, the mean residual 
error were applied, calculated from the formulae: 
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where: F̂  - distribution function given by kernel 
estimation; F – empirical distribution function; k – 
number of classes; di – grain diameter. 
In case of kernel methods, the formulae (4) becomes 
as following: 
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where: n – sample quantity; ni – i-th class quantity; h 
– optimal band width; other symbols as in the 
formulae (19). 
 

a) for Epanechnikov kernel: 
 

The kernel estimator of researched distribution 
density function (of random variable D) is obtained 
by applying Epanechnikov kernel into equation (21). 
The form of this estimator is as following: 
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where: ( ) { }55:1 hddhdNidD ii +≤≤−∈= ; 
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= nh σ  (equation (9)); other symbols as in (20). 
Whereas, distribution function estimator of this 
variable is given by the formulae: 
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where: ( ) { }5;2 hddNidD i +>∈= ; other symbols as 
in (21). 
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Figure 1. Distribution function plot given by 
Epanechnikov kernel (stage I) – sr=1,01. 
 

The example of distribution function plot, given by 
Epanechnikov kernel, is presented on the figure 1. 
 

b) for Gauss kernel: 
 

In this case we place into equation (21) the 
following kernel function: 
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The result will be the distribution density function of 
random variable D, given by the equation: 
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where: n – sample quantity; ni  - i-th class quantity; d 
– grain diameter; h – optimal band width 

5
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= nh σ  (equation (10)). 
And the distribution function estimator is in the 
form: 
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where: n, ni, h, d – as in (25). 
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Similarly as in case of Epanechnikov kernel, the 
group of distribution functions resulted. The 
example of this kind of function is presented on 
figure 2. 
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Figure 2. Distribution function plot given by Gauss 
kernel (stage I) – sr=0,75. 

4.2 Orthogonal Fourier series method 
In this case, the Fourier estimator of distribution 
density function of random variable D is in the 
following form: 
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where: A – right end of the last class; 
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Table 2. Comparison of mean residual errors for individual approximation methods. 
Comminution 

level 
RRB GSA Log-norm Cut RRB Fourier Epanechnikov 

kernel 
Gauss 
Kernel 

I 5,49 4,3 4,28 3,13 1,26 1,01 0,75 
II 3,86 5,3 5,32 2,85 1,90 0,87 0,76 
III 4,98 2,8 2,77 2,30 1,82 0,76 0,59 
IV 7,08 5,2 5,23 4,46 1,64 0,83 0,69 
V 8,04 5,1 5,13 4,00 1,61 0,58 0,52 
VI 4,46 2,3 2,28 1,75 1,67 0,79 0,66 
VII 4,92 2,0 2,01 1,72 2,13 0,64 0,56 
VIII 1,13 9,2 9,24 16,99 1,33 1,22 0,91 
IX 3,12 6,7 6,69 8,58 2,47 1,49 1,37 
X 3,16 4,0 4,03 4,76 1,92 0,95 0,73 

 
And the Fourier estimator of distribution density 
function is as following: 
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where: A, jQ̂  - as in equation (28). 
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Figure 3. Distribution function plot given by Fourier 
series approximation (stage I) – sr=1,26 

 
The results from every methods were compared to 

the traditional, classical approximations by known 
distribution functions RRB, GSA, log-norm and cut 
RRB. The results are shown in the table 2. 
 
5 COAL ENRICHMENT CURVE ESTIMATION 
BY APPLICATION OF NON PARAMETRIC 
METHODS 

Basing on equation (1) and marking by w density of 
investigated material and by p(x,w) separation 
function, which various forms are being applied for 
various devices and ways of enrichment, we may 
obtain the theoretical enrichment curve. Let assume 
that the separation function is given by normal 
distribution function.  
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where σ was calculated from the formulae for 

probable dissipation 
σπ2

477,0
=E  . It was assumed 

that E=0,14 (device characteristics). 
By application of non-parametric methods, we 

approximate the density function f(w) in base of the 

formulas (17), (22) or (25) and we obtain that, i.e. 
for Gauss kernel, the density function is in the 
following form: 
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If we assume that the coal enrichment is based on 
difference between specific gravities of researched 
material grains during jigging and the Gauss kernel 
was taken to approximate the density function, then 
the percentage share of fraction (xj, xj+1) is given by 
the equation: 
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where Φ(u) is normal distribution function N(0,1) 
 
Table 3 contains the example of coal enrichment 
curve estimation by application of Gauss kernel 
function. The graphical presentation of results is 
shown on figure 4. 
 
Table 3. Coal enrichment curve estimation by 
application of Gauss kernel function 
  

Specific 
gravity w 

Percentage 
yield in feed  

Percentage 
yield in 

product γj 

Separation 
function 

1,30-1,35 
1,35-1,40 
1,40-1,50 
1,50-1,60 
1,60-1,75 
1,75-1,90 
1,90-2,10 

49,8 
6,3 
5,5 
5,4 
5,0 
4,2 

23,8 

31,58 
3,27 
10,84 
9,61 
9,69 
10,45 
18,56 

37,58 
41,05 
51,89 
61,5 
71,19 
81,60 
100 

 
 
6 CONCLUSIONS 

1.  In case of lacking the information of which 
family of distribution functions may the random 
variable origins (or it is known that it is the mixture 



or complex distribution function), the non-
parametrical methods may be applied to estimate the 
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Figure 4. Coal enrichment curve given by Gauss 
kernel function application  
 
density function. Assuming as the measure of 
conformity the mean square error it may be said that 
the curves given by non-parametric estimation 
methods are usually better fitted to the empirical 
data than curves given by parametric approximation. 
2. The formulas of density functions given by non-
parametric methods may be applied to calculate the 
parameters of researched variable distribution and to 
calculate the confidence intervals for these 
parameters. In connection with non-classical 
Bayesian methods it allows determination the 
correct formulas of sample size for researched 
grained material.  
3. The non-parametric methods are particularly 
useful in situation when we are sure that researched 
random variable is characterized by stable 
distribution and our goal is to fit the distribution 
function to empirical one as well as it is possible. 
We face this kind of situation e.g. in case of 
balancing the useful component in feed and 
concentrate. 
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